Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(33): e2203437119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1960624

RESUMEN

The mortality of coronavirus disease 2019 (COVID-19) is strongly correlated with pulmonary vascular pathology accompanied by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-triggered immune dysregulation and aberrant activation of platelets. We combined histological analyses using field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses of the lungs from autopsy samples and single-cell RNA sequencing of peripheral blood mononuclear cells to investigate the pathogenesis of vasculitis and immunothrombosis in COVID-19. We found that SARS-CoV-2 accumulated in the pulmonary vessels, causing exudative vasculitis accompanied by the emergence of thrombospondin-1-expressing noncanonical monocytes and the formation of myosin light chain 9 (Myl9)-containing microthrombi in the lung of COVID-19 patients with fatal disease. The amount of plasma Myl9 in COVID-19 was correlated with the clinical severity, and measuring plasma Myl9 together with other markers allowed us to predict the severity of the disease more accurately. This study provides detailed insight into the pathogenesis of vasculitis and immunothrombosis, which may lead to optimal medical treatment for COVID-19.


Asunto(s)
COVID-19 , Pulmón , Cadenas Ligeras de Miosina , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Tromboinflamación , Vasculitis , COVID-19/sangre , COVID-19/complicaciones , COVID-19/patología , Humanos , Leucocitos Mononucleares , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Cadenas Ligeras de Miosina/sangre , RNA-Seq , SARS-CoV-2/aislamiento & purificación , Análisis de la Célula Individual , Espectrometría por Rayos X , Tromboinflamación/patología , Tromboinflamación/virología , Vasculitis/patología , Vasculitis/virología
2.
Talanta ; 245: 123486, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1796081

RESUMEN

Cancer is the leading cause of death in many countries. The development of new methods for early screening of cancers is highly desired. Targeted metallomics has been successfully applied in the screening of cancers through quantification of elements in the matrix, which is time consuming and requires combined techniques for the quantification due to the large elemental difference in the matrix. This work proposed a non-targeted metallomics (NTM) approach through synchrotron radiation based X-ray fluorescence (SRXRF) and machine learning algorithms (MLAs) for the screening of cancers. One hundred serum samples were collected from cancer patients who were confirmed by pathological examination with 100 matched serum samples from healthy volunteers. The serum samples were studied with SRXRF and the spectra from both groups were directly clarified through MLAs, which did not require the quantification of elements. The NTM approach through SRXRF and MLAs is fast (5s for data collection for one sample) and accurate (over 96% accuracy) for cancer screening. Besides, this approach can also identify the most affected elements in cancer samples like Ca, Zn and Ti as we found, which may shed lights on the drug development for cancer treatment. This NTM approach can also be applied through commercially available XRF instruments or ICP-TOF-MS with MLAs. It has the potential for the screening and prediction of other diseases like COVID-19 and neurodegenerative diseases in a high throughput and least invasive way.


Asunto(s)
COVID-19 , Neoplasias , COVID-19/diagnóstico , Detección Precoz del Cáncer , Humanos , Aprendizaje Automático , Neoplasias/diagnóstico por imagen , Espectrometría por Rayos X , Sincrotrones , Rayos X
3.
Molecules ; 26(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1282534

RESUMEN

Multi-drug resistant pathogens are a rising danger for the future of mankind. Iodine (I2) is a centuries-old microbicide, but leads to skin discoloration, irritation, and uncontrolled iodine release. Plants rich in phytochemicals have a long history in basic health care. Aloe Vera Barbadensis Miller (AV) and Salvia officinalis L. (Sage) are effectively utilized against different ailments. Previously, we investigated the antimicrobial activities of smart triiodides and iodinated AV hybrids. In this work, we combined iodine with Sage extracts and pure AV gel with polyvinylpyrrolidone (PVP) as an encapsulating and stabilizing agent. Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-Vis), Surface-Enhanced Raman Spectroscopy (SERS), microstructural analysis by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-Ray-Diffraction (XRD) analysis verified the composition of AV-PVP-Sage-I2. Antimicrobial properties were investigated by disc diffusion method against 10 reference microbial strains in comparison to gentamicin and nystatin. We impregnated surgical sutures with our biohybrid and tested their inhibitory effects. AV-PVP-Sage-I2 showed excellent to intermediate antimicrobial activity in discs and sutures. The iodine within the polymeric biomaterial AV-PVP-Sage-I2 and the synergistic action of the two plant extracts enhanced the microbial inhibition. Our compound has potential for use as an antifungal agent, disinfectant and coating material on sutures to prevent surgical site infections.


Asunto(s)
Antibacterianos/química , Antibacterianos/síntesis química , Aloe/química , Antifúngicos/química , Gentamicinas/química , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo/métodos , Nistatina/química , Extractos Vegetales/química , Povidona/química , Salvia/química , Salvia officinalis/química , Espectrometría por Rayos X/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Difracción de Rayos X/métodos
4.
ACS Appl Mater Interfaces ; 13(22): 25694-25700, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1246315

RESUMEN

Containing the global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been an unprecedented challenge due to high horizontal transmissivity and asymptomatic carriage rates. Lateral flow device (LFD) immunoassays were introduced in late 2020 to detect SARS-CoV-2 infection in asymptomatic or presymptomatic individuals rapidly. While LFD technologies have been used for over 60 years, their widespread use as a public health tool during a pandemic is unprecedented. By the end of 2020, data from studies into the efficacy of the LFDs emerged and showed these point-of-care devices to have very high specificity (ability to identify true negatives) but inadequate sensitivity with high false-negative rates. The low sensitivity (<50%) shown in several studies is a critical public health concern, as asymptomatic or presymptomatic carriers may wrongly be assumed to be noninfectious, posing a significant risk of further spread in the community. Here, we show that the direct visual readout of SARS-CoV-2 LFDs is an inadequate approach to discriminate a potentially infective viral concentration in a biosample. We quantified significant immobilized antigen-antibody-labeled conjugate complexes within the LFDs visually scored as negative using high-sensitivity synchrotron X-ray fluorescence imaging. Correlating quantitative X-ray fluorescence measurements and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) determined numbers of viral copies, we identified that negatively scored samples could contain up to 100 PFU (equivalent here to ∼10 000 RNA copies/test). The study demonstrates where the shortcomings arise in many of the current direct-readout SARS-CoV-2 LFDs, namely, being a deficiency in the readout as opposed to the potential level of detection of the test, which is orders of magnitude higher. The present findings are of importance both to public health monitoring during the Coronavirus Disease 2019 (COVID-19) pandemic and to the rapid refinement of these tools for immediate and future applications.


Asunto(s)
COVID-19/diagnóstico , COVID-19/virología , Inmunoensayo/instrumentación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/aislamiento & purificación , Animales , Chlorocebus aethiops , Microscopía Electrónica de Transmisión , Reacción en Cadena en Tiempo Real de la Polimerasa , Estándares de Referencia , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/ultraestructura , Sensibilidad y Especificidad , Espectrometría por Rayos X , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA